330 research outputs found

    Development of Gas Turbine Fast Mathematical Model Simulation Module for Software Complex «Electrodin» based on LabVIEW

    Get PDF
    A fast mathematical model simulation module based on LabVIEW graphical programming environment has been developed. The module will be used for gas turbine and electrical power system co-simulation, and for testing automation of gas turbine automatic control systems

    Digital Twin of the Radio Environment: A Novel Approach for Anomaly Detection in Wireless Networks

    Full text link
    The increasing relevance of resilience in wireless connectivity for Industry 4.0 stems from the growing complexity and interconnectivity of industrial systems, where a single point of failure can disrupt the entire network, leading to significant downtime and productivity losses. It is thus essential to constantly monitor the network and identify any anomaly such as a jammer. Hereby, technologies envisioned to be integrated in 6G, in particular joint communications and sensing (JCAS) and accurate indoor positioning of transmitters, open up the possibility to build a digital twin (DT) of the radio environment. This paper proposes a new approach for anomaly detection in wireless networks enabled by such a DT which allows to integrate contextual information on the network in the anomaly detection procedure. The basic approach is thereby to compare expected received signal strengths (RSSs) from the DT with measurements done by distributed sensing units (SUs). Employing simulations, different algorithms are compared regarding their ability to infer from the comparison on the presence or absence of an anomaly, particular a jammer. Overall, the feasibility of anomaly detection using the proposed approach is demonstrated which integrates in the ongoing research on employing DTs for comprehensive monitoring of wireless networks.Comment: 6 pages, 4 figure

    On generating series of finitely presented operads

    Full text link
    Given an operad P with a finite Groebner basis of relations, we study the generating functions for the dimensions of its graded components P(n). Under moderate assumptions on the relations we prove that the exponential generating function for the sequence {dim P(n)} is differential algebraic, and in fact algebraic if P is a symmetrization of a non-symmetric operad. If, in addition, the growth of the dimensions of P(n) is bounded by an exponent of n (or a polynomial of n, in the non-symmetric case) then, moreover, the ordinary generating function for the above sequence {dim P(n)} is rational. We give a number of examples of calculations and discuss conjectures about the above generating functions for more general classes of operads.Comment: Minor changes; references to recent articles by Berele and by Belov, Bokut, Rowen, and Yu are adde

    Endolithic Algae Affect Modern Coral Carbonate Morphology and Chemistry

    Get PDF
    While burial diagenetic processes of tropical corals are well investigated, current knowledge about factors initiating early diagenesis remains fragmentary. In the present study, we focus on recent Porites microatolls, growing in the intertidal zone. This growth form represents a model organism for elevated sea surface temperatures (SSTs) and provides important but rare archives for changes close to the seawater/atmosphere interface with exceptional precision on sea level reconstruction. As other coral growth forms, microatolls are prone to the colonization by endolithic green algae. In this case, the algae can facilitate earliest diagenetic alteration of the coral skeleton. Algae metabolic activity not only results in secondary coral porosity due to boring activities, but may also initiate reprecipitation of secondary aragonite within coral pore space, a process not exclusively restricted to microatoll settings. In the samples of this initial study, we quantiïŹed a mass transfer from primary to secondary aragonite of around 4% within endolithic green algae bands. Using ÎŽ 18 O, ÎŽ 13 C, Sr/Ca, U/Ca, Mg/Ca, and Li/Mg systematics suggests that the secondary aragonite precipitation followed abiotic precipitation principles. According to their individual distribution coefïŹcients, the different isotope and element ratios showed variable sensitivity to the presence of secondary aragonite in bulk samples, with implications for microatoll-based SST reconstructions. The secondary precipitates formed on an organic template, presumably originating from endolithic green algae activity. Based on laboratory experiments with the green algae Ostreobium quekettii, we propose a conceptual model that secondary aragonite formation is potentially accelerated by an active intracellular calcium transport through the algal thallus from the location of dissolution into coral pore spaces. The combined high-resolution imaging and geochemical approach applied in this study shows that endolithic algae can possibly act as a main driver for earliest diagenesis of coral aragonite starting already during a coral’s life span

    A Statistical Social Network Model for Consumption Data in Food Webs

    Full text link
    We adapt existing statistical modeling techniques for social networks to study consumption data observed in trophic food webs. These data describe the feeding volume (non-negative) among organisms grouped into nodes, called trophic species, that form the food web. Model complexity arises due to the extensive amount of zeros in the data, as each node in the web is predator/prey to only a small number of other trophic species. Many of the zeros are regarded as structural (non-random) in the context of feeding behavior. The presence of basal prey and top predator nodes (those who never consume and those who are never consumed, with probability 1) creates additional complexity to the statistical modeling. We develop a special statistical social network model to account for such network features. The model is applied to two empirical food webs; focus is on the web for which the population size of seals is of concern to various commercial fisheries.Comment: On 2013-09-05, a revised version entitled "A Statistical Social Network Model for Consumption Data in Trophic Food Webs" was accepted for publication in the upcoming Special Issue "Statistical Methods for Ecology" in the journal Statistical Methodolog

    Capturing of organic carbon and nitrogen in eelgrass sediments of southern Scandinavia

    Get PDF
    The ability of seagrass meadows to filter nutrients and capture and store CO2 and nutrients in the form of organic carbon (OC) and nitrogen (N) in their sediments may help to mitigate local eutrophication as well as climate change via meadow restoration and protection. This study assesses OC and N sediment stocks (top 50 cm) and sequestration rates within Danish eelgrass meadows. At four locations, eelgrass-vegetated and nearby unvegetated plots were studied in protected and exposed areas. The average OC and N sediment 50 cm stocks were 2.6 ± 0.3 kg OC m − 2 and 0.23 ± 0.01 kg N m − 2, including vegetated and unvegetated plots. In general, OC and N stocks did not differ significantly between eelgrass meadows and unvegetated sediments. Lack of accumulation of excess 210Pb suggested sediment erosion or low rates of sediment accumulation at most sites. OC accumulation rates ranged from 6 to 134 g m − 2 yr − 1 and N from 0.7 to 14 g m − 2 yr − 1. Generalized additive models showed that ≄ 80 % of the variation in sediment OC and N stocks was explained by sediment grain size, organic matter source, and hydrodynamic exposure. Long cores, dated with 210Pb, showed declining OC and N densities toward present time, suggesting long-term declines in eelgrass OC and N pools. Estimates of potential nation-wide OC and N accumulation in eelgrass sediments show that they could annually capture up to 0.7 % ± 0.5 % of CO2 emissions and 6.9 % ± 5.2 % of the total terrestrial N load

    Richness in Functional Connectivity Depends on the Neuronal Integrity within the Posterior Cingulate Cortex

    Get PDF
    The brain's connectivity skeleton-a rich club of strongly interconnected members-was initially shown to exist in human structural networks, but recent evidence suggests a functional counterpart. This rich club typically includes key regions (or hubs) from multiple canonical networks, reducing the cost of inter-network communication. The posterior cingulate cortex (PCC), a hub node embedded within the default mode network, is known to facilitate communication between brain networks and is a key member of the "rich club." Here, we assessed how metabolic signatures of neuronal integrity and cortical thickness influence the global extent of a functional rich club as measured using the functional rich club coefficient (fRCC). Rich club estimation was performed on functional connectivity of resting state brain signals acquired at 3T in 48 healthy adult subjects. Magnetic resonance spectroscopy was measured in the same session using a point resolved spectroscopy sequence. We confirmed convergence of functional rich club with a previously established structural rich club. N-acetyl aspartate (NAA) in the PCC is significantly correlated with age (p = 0.001), while the rich club coefficient showed no effect of age (p = 0.106). In addition, we found a significant quadratic relationship between fRCC and NAA concentration in PCC (p = 0.009). Furthermore, cortical thinning in the PCC was correlated with a reduced rich club coefficient after accounting for age and NAA. In conclusion, we found that the fRCC is related to a marker of neuronal integrity in a key region of the cingulate cortex. Furthermore, cortical thinning in the same area was observed, suggesting that both cortical thinning and neuronal integrity in the hub regions influence functional integration of at a whole brain level
    • 

    corecore